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1. Introduction

This paper concerns the selfdual string soliton in the M5 brane. We assume a straight

string with SO(4) rotational symmetry, and we wish to analyze its shape for SU(2) gauge

group proceeding by analogy with the magnetic monopole construction in super Yang-Mills

theory.

Having strings with SO(4) rotational symmetry, it is very natural to expect that

the equation that corresponds to the Nahm equation in the construction of magnetic

monopoles, should also have this SO(4) symmetry. Moreover, it is natural to suspect

that a fuzzy three-sphere would play a similar role for the selfdual string construction as

the fuzzy two-sphere plays for the magnetic monopole.

More precisely, for monopoles one has solutions to the Nahm equation of the form

T I ∼ tI

z − 1
(1.1)
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near z = 1, where tI are coordinates on a fuzzy two-sphere. That is, tI are some represen-

tation matrices for SU(2). For the selfdual string the analog of this would be

T i ∼ Gi

√
z − 1

(1.2)

near z = 1, where Gi now are coordinates on a fuzzy three-sphere. This approach was

taken in [7, 3] among others.

The construction of the fuzzy three-sphere [2] is complicated compared to the fuzzy

two-sphere. But if one notices the isomorphism su(2)⊕su(2) ≃ so(4), one could think that

the fuzzy three sphere could be described in terms of (or at least be mapped to) two fuzzy

two-spheres.

If Gi denote the coordinates on a fuzzy three-sphere in a certain reducible represen-

tation of SO(4), characterized by the single integer n (see [2] for details), and if we define

Gij = 1
2 [Gi, Gj ], and let λI

ij denote the ’t Hooft matrices (defined in appendix A), then

tI =
1

2
λI

ijG
ij

t̃I =
1

2
λ̃I

ijG
ij (1.3)

can be computed, for instance from eq. (17) in [3].1 The result is very simple,

tI =
∑

r

ρr(σ
I)

t̃I =
∑

r

ρr(σ̃
I) (1.7)

where [σI , σJ ] = 2iǫIJKσ
K are the Pauli sigma matrices. There is a tensor product and

ρr(σ
I) means 1⊗ · · · ⊗ σI ⊗ · · · ⊗ 1 where σI is placed at position r = 1, . . . , n. This shows

that there is a map from the fuzzy three-sphere coordinates to the coordinates tI and t̃I of

two fuzzy two-spheres,

4itI = ǫIJK [tJ , tK ]

4it̃I = ǫIJK [t̃J , t̃K ] (1.8)

1Eq. (17) in [3] reads

G
ij
P± =

n
X

r=1

„

n + 3

4
ρr(γ

ij
P±) −

n + 1

4
ρr(γ

ij
P∓)

«

P± (1.4)

(For n = 1, this is Gij = γij). From this we get

λ
I
ijG

ij
P+ = (n + 3)

X

r

ρr(σ
I)

λ
I
ijG

ij
P− = −(n + 1)

X

r

ρr(σ
I). (1.5)

Here 4σI = λI
ijγ

ij . Then the sum λI
ijG

ij
≡ 2tI becomes

t
I =

X

r

ρr(σ
I). (1.6)
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This suggests that it might be possible to describe the fuzzy three-sphere in this alternative

way as two fuzzy two-spheres.

One could now also suspect that the selfdual string can be viewed in some sense as

two decoupled sets of magnetic monopoles. This is what we wish to make precise in this

paper.

We will work in loop space, and use loop space fields, that is, fields that depend not

on a point but on a whole loop C embedded in space. In particular we have a loop space

gauge field Aµs(C) which, in the abelian case, may be given the ultra local form

Aµs(C) = Bµν(C(s))Ċν(s) (1.9)

where B denotes the usual two-form gauge field, which is one of the fields in the tensor

multiplet in six dimensions.

In [10] it was shown that (2, 0) supersymmetry can be extended to non-abelian loop

space fields under quite general assumptions. One need not assume ultra locality for this

to work. Neither do we need any assumptions on ultra locality in what we do in this paper.

We wish to leave ultra locality as an open crucial question. Eventually, if one wants to

make concrete computations, one will have to face the question. For the time being we

content ourselves with setting up some algebraic framework in loop space, that should put

some constraints on what (2, 0) theory could be. Loop space is a very big space, and it

seems to us like (2, 0) theory could live somewhere in it. But we do not know exactly where

it lives. More precisely, one should find the appropriate constraints on the loop space fields.

In the abelian case, we notice that we need the three-form field strength Hµνρ to be

anti-self-dual in order to close two supersymmetry variations into a superalgebra on the

equations of motion. However, as was seen in [10], we do not need to enforce self-duality

on the corresponding loop space field strength Fµs,νt in order to close supersymmetry on-

shell. Intuitively one can understand why this should be so, by inserting the condition of

self-duality into the loop space field strength. We then find that

Fµs,νt(C) = Hµνρ(C(s))Ċρ(s)δ(s − t)

=
1

6
ǫκτσ

µνρHκτσ(C(s))Ċρ(s)δ(s − t) (1.10)

but the second line in this equation can not be expressed in terms of Fµs,νt(C), which shows

that we can not implement self-duality on Fµs,νt(C).2 Happily, in [10] we could show that

no ‘self-duality’ on Fµs,νt is needed in order to close supersymmetry on-shell. Self-duality

comes out from the loop space supersymmetry formalism once we insert the ultra local

equation eq. (1.9) for the loop space fields into the loop space supersymmetry variations.

In [11, 12] a gerbe formalism was developed with ultra local expressions for non-abelian

loop space gauge fields as defined in [13] based on ideas in [14]. This formalism uses a local

2Possibly one may relate F (C) to some sort of hodgedual of F (C′) when evaluated at a different loop C′

so that one would have a non-local self-duality condition in loop space. Now supersymmetry acts locally in

loop space and relates the variation of a bosonic (fermionic) field at C to fermionic (bosonic) fields evaluated

at the same point C, hence any non-local constraints on loop space fields do not concern us when we study

supersymmetry.
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connection two-form Bµν as well as a local connection one-form Aµ subject to vanishing fake

curvature.3 Vanishing fake curvature was shown in [11, 12] is needed in order for Wilson

surfaces to be well-defined. Presumably there are corresponding ultra local expressions for

the other loop space fields in the tensor multiplet as well. It may be that one just need

to hang on a gauge index on the scalars and fermions. Inspired by how things work in

the abelian case, one could try and play the same game with such non-abelian ultra local

loop space fields. Plugging such loop space fields into the supersymmetry variations in

loop space obtained in [10], one can derive corresponding equations for the local fields (for

the Bµν and Aµ). From such a computation one should find a non-abelian counterpart

of the self-duality condition on Bµν . But now, just like self-duality could not be imposed

in loop space, vanishing fake curvature can probably not either. But again, just like self-

duality comes out from supersymmetry when we assume ultra locality in the abelian case,

in the non-abelian case the condition of vanishing fake curvature could also come out from

supersymmetry. Though this is just a speculative idea.

It would of course be extremely nice if an ultra local approach could be made to work

consistently with supersymmetry, since then one could derive equations of motion for local

space-time fields from loop space equations, and possibly also start to do real physics

computations in non-abelian (2, 0) theory.

Either way, we think that any possible set of equations that contains (2, 0) theory

one way or the other, should be worth to study, even if it may be difficult to tell at the

moment what these equations could be used for. Eventually (2, 0) theory (if eventually

properly understood) could be useful in describing non-perturbative effects in QCD [15],

as well as giving a better understanding of M-theory and quantum gravity via AdS-CFT

correspondence.

The redaction is as follows: In section 2 we introduce suitable coordinates in loop

space, that generalizes the Hopf map S3 7→ S2. In section 3 we derive the Bogomolnyi

equation for selfdual strings in terms of these new loop space coordinates. In section 3.1

we present an abelian solution and a loop space generalization of the ADHMN construction

of selfdual strings. In section 4 we show how the corresponding Nahm equations can be

obtained from the membrane theory. In section 4.1 we show that this membrane theory

can be reduced to super Yang-Mills theory. In section 5 we show the relation between two

Nahm equations and the Basu-Harvey equation in Ref [7].

2. Various coordinates in loop space

We assume static straight strings in 1 + 5 dimensions. Hence we have translational in-

variance in 1 + 1 dimensions, and we will restrict our attention to the transverse space

to the strings, R
4, with cartesian coordinates xi. We then also consider the loop space

over R
4. If we parametrize the embedding of a loop in R

4 as s 7→ Ci(s), we have coordi-

nates for this loop that are Ci(s) with s being a continuous index. Hence loop space is an

infinite-dimensional space.

3Something like Fµν ∼ Bµν where F is the curvature of A, though generically F and A can take values

in different internal algebras and one must map B to the same algebra as A to make sense of this equation.
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If the loop is planar, then we can compute the area that it encloses by integrating

σij
s := Ci(s)Ċj(s) − Cj(s)Ċi(s) (2.1)

around the loop. But we now define this quantity for any loop, and then we may define a

new set of coordinates on loop space as4

XI
s :=

1

2
λI

ijσ
ij
s

X̃I
s :=

1

2
λ̃I

ijσ
ij
s (2.2)

that we may invert to get

σij
s = −1

2

(

λI
ijX

I
s + λ̃I

ijX̃
I
s

)

(2.3)

We now claim that either X or X̃ can be used as coordinates on loop space. To see this

we would like to invert the maps

Ci(s) 7→ XI
s

Ci(s) 7→ X̃I
s (2.4)

but this seems to be very difficult, by making an exact computation. So instead we consider

a wavy line in Monge gauge

Ci(s) = (s, ξa(s)) (2.5)

where a = 1, 2, 3, and compute the inverse just to lowest order in the fluctuations about a

straight line. We get

σ1a
s = s2

d

ds
(s−1ξa(s)) (2.6)

and from this, we can obtain ξa(s) in terms of XI
s by means of an integration. Then we

get

∂Ci(s)

∂XI
t

= − s

t2
θ(s− t)λI

1i + O(ξ)

∂Ci(s)

∂X̃I
t

= − s

t2
θ(s− t)λ̃I

1i + O(ξ). (2.7)

Here θ(•) denotes the Heaviside step function. We can now check that these constitute the

inverse mappings to

∂XI
t

∂Ci(u)
= λI

1it
2 d

dt

(
t−1δ(t− u)

)
+ O(ξ)

∂XI
t

∂C̃i(u)
= λ̃I

1it
2 d

dt

(
t−1δ(t− u)

)
+ O(ξ) (2.8)

4For the zero mode part this is the Hopf map from S3 to S2.
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in the sense that

∫

dt
∂Ci(s)

∂XI
t

∂XI
t

∂Cj(u)
= δijδ(s − u)

∫

dt
∂Ci(s)

∂X̃I
t

∂X̃I
t

∂Cj(u)
= δijδ(s − u),

∫

ds
∂Ci(s)

∂XI
t

∂XJ
r

∂Ci(s)
= δIJδ(t− r) (2.9)

We may also note that

∂XI
s

∂X̃J
t

=

∫

dr
∂XI

s

∂Ci(r)

∂Ci(r)

∂X̃J
t

∼ (λI λ̃J)11 (2.10)

is a non-singular matrix. Hence X 7→ X̃ is a well-behaved coordinate transformation.

We have seen that it is always possible to get Ci(s) from σ
ij
s (in fact from σi1

s in Monge

gauge) by means of an integration. We have also seen that XI
s and X̃I

s are dependent coor-

dinates. We may probably always choose either XI
s or X̃I

s as independent coordinates, in

place of (gauge fixed) coordinates Ci(s). If we impose a gauge fixing on the parametriza-

tion of Ci(s), then we have three independent coordinates that describes the loop. But

such a gauge fixing on Ci(s) does not imply any gauge fixing on XI
s . So now we do have

a matching number of coordinates.

3. The Bogomolnyi equation

In the abelian case, the Bogomolnyi equation for selfdual strings was obtained in [1]. It is

given by

Hijk = ǫijlk∂lφ (3.1)

where Hijk = ∂iBjk + ∂jBki + ∂kBij is the gauge field strenght of the two-form gauge

potential Bij .

To generalize this to the non-abelian case, we first introduce abelian loop space fields,

Ais = Bij(C(s))Ċj(s)

φis = Ċi(s)φ(C(s)) (3.2)

and define the field strength Fis,jt = δ
δCi(s)

Ajt − δ
δCj (t)

Ais. We get

Fis,jt = Hijk(C(s))Ċj(s)δ(s − t). (3.3)

We then find that the Bogomolnyi equation can be written as

Fis,jt = ǫijkl∂ksφlt (3.4)

where ∂is := δ
δCi(s)

.

– 6 –
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We now propose that the non-abelian generalization of this equation is given by [6]

Fis,jt = ǫijklDksφlt. (3.5)

where Dis = ∂is +Ais is the gauge covariant derivative.

We can write the one-form gauge potential in loop space

A(C) =

∫

dsAisδC
i(s) (3.6)

in the various coordinate systems as follows,

A(C) =

∫

dsAI(s,X)δXI
s

=

∫

dsÃI(s, X̃)δX̃I
s (3.7)

From this, we get that

Ais = λI
ij

(

AI(s)Ċ
j(s) +

1

2
ȦI(s)C

j(s)

)

(3.8)

In concordance with this, we also let

φis(C) = Ċi(s)φ(s,X) +
1

2
Ci(s)φ̇(s,X) (3.9)

for the scalar field.

In [6] it was shown that the SU(2) covariant Bogomolnyi equation

1

2
ǫIJKFIJ(s, t) = DK(s)φ(t), (3.10)

with the above definitions of the fields, implies the SO(4) covariant Bogomolnyi equation,

eq. (3.5), for selfdual strings. Here DK(s) = δ
δXK

s
+ AK(s). This however, does not show

that any solution to eq. (3.5) can be obtained solely from eq. (3.10), and in fact this is not

true. We need another copy of the SU(2) equation.

We can choose to express a field in terms of the coordinates X or the coordinates X̃ .

Let now A = A(X) and Ã = Ã(X̃) commute, [A, Ã] = 0, and similarly φ = φ(X) and

φ̃ = φ̃(X̃) also commute, [φ, φ̃] = 0. Then we may consider the two Bogomolnyi equations

for these fields,

FIJ = ǫIJKDKφ

F̃IJ = ǫIJKD̃K φ̃ (3.11)

and find that

Ais = ∂isX
I
t AI + ∂isX̃

Ĩ ÃĨ

φis = Ċi(s)
(

φ+ φ̃
)

+
1

2
Ci(s)

(

φ̇+ ˙̃
φ
)

(3.12)

satisfies the Bogomolnyi equation.

– 7 –
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Connection with local physics is provided by letting

Bij(s) = λI
ijAI(s) + λĨ

ijAĨ(s) (3.13)

for the two-form gauge potential. This relation can now be inverted, to express AI and ÃI

in terms of Bij or in terms of Ais.

In the abelian case, we can then let Bij(s,C) = Bij(C(s)) be the usual local two-

form gauge potential. For point-like loops our definition coincides with the conventional

definition

Ais = Bij(C(s))Ċj(s). (3.14)

We now show the the SO(4) Bogomolnyi equation implies these two SU(2) Bogomolnyi

equations. We compute

ǫIJKFIJ(s, t) = ǫIJK

∫

du

∫

dv
uv

s2t2
λI

1iλ
J
1jθ(u− s)θ(v − t)Fiu,jv

=
1

s2t2
ǫIJKλ

I
1iλ

J
1jǫijkl

∫

du

∫

dvuvθ(u− s)θ(v − t)Dkuφlv

= 2λK
1i

1

s2t2

∫

du

∫

dvuvθ(u− s)θ(v − t)Diuφ1v (3.15)

We note that

φ1s = φ(s) +
1

2
sφ̇(s) (3.16)

in Monge gauge. Then we use

Diu =

∫

dw
∂XI

w

∂Ci(u)
DI(w) (3.17)

and get

ǫIJKFIJ(s, t) = 2λK
1iλ

I
i1

1

s2t2

∫

du

∫

dv

∫

dwuv

θ(u− s)θ(v − t)
(

δ(w − u) +wδ̇(u− w)
)

DI(w)

(

φ(v) +
1

2
vφ̇(v)

)

= 2DK(s)φ(t) (3.18)

The same type of computation can be done to show that

ǫIJKF̃IJ(s, t) = 2D̃K(s)φ̃(t). (3.19)

3.1 Constructing selfdual string solutions

In the abelian case, far away from a selfdual string, the U(1) field strength is of the form

Hijk(x) = ǫijkl
xl

|x|4 . (3.20)

– 8 –
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The string being self-dual means that Hi05 ∼ ǫijklHjkl. From now on we will only focus

on the components Hijk of the field strength, which means that we may forget about

self-duality. From eqs. (3.20), (3.3) we then get

Fis,jt = ǫijkl
σkl

s

(Rs)4
δ(s − t) (3.21)

where Rs = |Ci(s)|. We would now like to transform this solution into our new coordinates

in loop space. However, we do not get any nice (i.e. symmetric) expression if we just use the

X coordinates. We can get a much nicer expression if we use both X and X̃ coordinates.

We then first separate Fis,jt into selfdual and antiself dual pieces5 as

Fis,jt = F+
is,jt + F−

is,jt. (3.22)

We then apply the wavy line approximation. Now to be slightly more general, and to get s

dimensionless, we introduce parameters Ra of dimension length, and parametrize the wavy

line as

Ci(s) = (Rs,Rξa(s) +Ra) (3.23)

where R =
√
RaRa may be thought of as a radius. Then we find that

XI
sX

I
s = R4(1 + O(s, ξ)) (3.24)

Then noting the identity (λIλJλK)11 = iǫIJK , we get

FIJ(s, t,X) =
1

R2
ǫIJK

∫

du
u2

s2t2
θ(u− s)θ(u− t)

XK
u

(Ru)4
(3.25)

from the F+ piece, and similarly,

F̃IJ(s, t, X̃) =
1

R2
ǫIJK

∫

du
u2

s2t2
θ(u− s)θ(u− t)

X̃K
u

(Ru)4
(3.26)

from F−. These solutions look rather strange, but if we write s−2 = −∂s(s
−1), and make

‘an integration by parts’ by moving the derivative ∂s to the theta function (eventhough

there is no integration over s), and then do the same thing for t−2, then we get

FIJ(s, t,X) =
1

R2
ǫIJK

XK
s

(Rs)4
δ(s − t)

= ǫIJK
XK

s

|Xs|3
δ(s − t)(1 + O(ξ)) (3.27)

which equals the field strength from a Dirac monopole (in a way that is consistent with

the accuracy of our approximation).6

5By selfdual we simply mean with respect to ǫijkl, and not with respect to some strange loop space

hodgeduality operator. It should be noted that this decomposition into self-dual pieces has nothing to do

with self-duality of Hµνρ!
6Now this is up to a total derivative. But it seems likely that this total derivative term could appear in

the O(ξ) as well.
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If we would not use both X and X̃ coordinates, we would not get a solution that would

resemble a Dirac monopole at all. This is why we could not get any selfdual string solution

by solving just one SO(3) covariant Bogomolnyi equation — we need two copies of this

equation. In general we need to solve these two decoupled copies of this equation and then

look for the physical string solution as a certain linear combination of these solutions.

The simplest non-abelian solution to the SO(3) Bogomolnyi equation is

φ(s,X) = ϕ(Xs)

Aµ(s,X) = Aµ(Xs) (3.28)

where ϕ(x) ∼ 2 coth(2x) − 1
x

is the celebrated Higgs profile of the ’t Hooft-Polyakov

monopole, and Aµ(x) may be taken as the hedgehog solution for the gauge field.

This solution can be obtained by imitating the ADHMN construction. We then take

the trivial solution T I(s) = 0 to the Nahm equation (to be presented shortly). Then the

construction equation (also to be presented shortly) reads

(

− δ

δz(t)
+XI

t σI

)

v = 0 (3.29)

where z(s) ∈ [−1, 1]. This equation has solutions

v = N(X)P exp

(∫

dtz(t)XI
t σI

)

n (3.30)

where n is an element in an orthonormal basis of vectors. P denotes a path ordered

exponent. We separate these solutions into factors as

v =
∏

s

vs (3.31)

This decomposition becomes unique if we in addition impose the normalization conditions

∫ 1

−1
dz(s)(vs)

2 = 1 (3.32)

for each s. We then find that

vs = N(s,X) exp
(
z(s)XI

sσI

)
n (3.33)

The normalization conditions yield

N(s,X) =

√

|Xs|
sinh(2|Xs|)

(3.34)

(Here | • | denotes the standard euclidean norm.) and then we get

φ(s,X) =
∏

r 6=s

∫

dz(r)(vr)
2

∫

dz(s)z(s)(vs)
2

= N(Xs)
2

∫ 1

−1
dz(s)z(s) exp

(
2z(s)XI

s σI

)
. (3.35)
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The evaluation of this integral gives the ’t Hooft-Polyakov solution presented above.

In an attempt to find the general solution to one of these SO(3) Bogomolnyi equations,

in the case of SU(2) gauge group, we use the ADHMN construction for magnetic monopoles.

We thus make the following ansatz

AI(s) = −i
∫

[dz]
∏

t

v
†
t∂I(s)vt

φ(s) =

∫

[dz]
∏

t

z(s)v†t vt (3.36)

and we make a corresponding ansatz for the tilde fields Ã and φ̃. Here vt = vt(z,X)

and z = z(s) is a one-dimensional loop. In the path integral we integrate over the range

z(s) ∈ [−1, 1] for each s. We normalize vr as

∫ 1

−1
dz(r)v†rvr = 1 (3.37)

for each r, and we let vr be subject to the construction equations

∆†
sv = 0, (3.38)

where

∆r(z) =
δ

δz(r)
+

(
XI

r − T I(z, r)
)
σI (3.39)

and where the T I obey the generalized Nahm equation

δTK(s)

δz(r)
+
i

2
ǫIJK [T I(s), T J(r)] = 0. (3.40)

We then define vr by eqs. (3.31), (3.32).

To see that this really gives solutions to our Bogomolnyi equation, one can just make

very small modification of existing derivations of the ADHMN construction. We present

such a slightly modified derivation in the appendix B.

Also one should specify the boundary conditions. By suitable choice of units (i.e. of

the Higgs vev), we have already assumed that the range is z(s) ∈ [−1, 1] and we now give

the boundary conditions as

T I(s) = − tI(s)

z(s) ∓ 1
+ O(1). (3.41)

near z(s) = ±1. Then

2itK(s)δ(s − r) = ǫIJK [tI(s), tJ(r)] (3.42)

From this we conclude that

[tI(s), tJ(r)] = ǫIJKδ(s − r)tK(s) +KδIJ δ̇(s− r) (3.43)

where we can allow for a central extension.

– 11 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
3

4. Nahm’s equations from the membrane

We now wish to see if we can obtain the Nahm equation as the Bogomolnyi equation for

the M2 brane. If the M5 brane is extended in the directions 0, 1, 2, 3, 4, 5 and the M2

brane in the directions 0, 1, 6 then the unbroken supersymmetries satisfy [5]

Γ6ǫ = Γ2345ǫ (4.1)

This brane configuration is translationally symmetric in all directions but the 6-direction.

In particular the branes intersect along a string aligned along the 1-direction. We assume

that only the scalar fields on M2 are excited which are parallel to M5 brane, and we denote

these excited scalar fields as Xi for i = 2, 3, 4, 5. The supersymmetry variation for the

fermions on the M2-brane (assuming the conjectured membrane theory in [4]) is given by

δψ = −Γ6ΓiǫD6X
i − 1

6
Γijkǫ[X

i,Xj ,Xk]M2 (4.2)

The condition for unbroken supersymmetry can be rewritten as

ǫijklΓlΓ
6ǫ = Γijkǫ (4.3)

By demanding δψ = 0 for such supersymmetry parameters, we find the Nahm equation

∂6X
i ∼ ǫijkl[X

j ,Xk,X l]M2. (4.4)

It seems like there is only one way one can extend the membrane theory if one wants to

leave the SO(4) gauge group. This is to let the gauge group be of the form ŜU(N), where

ŜU(N) denotes the loop algebra of SU(N) with a non-trivial central extension. More

generally one could take the loop algebra extension of any semi-simple Lie algebra. We

denote the generators as T a(s), 1, where Tr(T a(s)) = 0, and we choose a normalization

such that Tr(1) = 1. We define the membrane three-bracket as [9]

[a, b, c]M2 = [a, b]Tr(c) + [b, c]Tr(a) + [c, a]Tr(b). (4.5)

One may verify that this three-bracket satisfies the Fundamental Identity (the analog of

the Jacobi identity for three-algebras, see [4]).

Let tI generate an su(2) subalgebra of ŝu(N). Using the membrane bracket, we then

find that

[tI , tJ , 1]M2 = ǫIJKtK (4.6)

and all the other brackets vanish, so for instance [tI , tJ , tK ]M2 = 0.

If we take a gauge group that has su(2) ⊕ su(2) as a subalgebra, we can solve the

Nahm equation by taking

XI(z) = T I(z) + T̃ I(z)

X4(z) = 1 (4.7)
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where x6 is here denoted by z as conventional, thereby descending to the Nahm equation

∂6T
I = ǫIJKT JTK

∂6T̃
I = ǫIJKT̃ J T̃K . (4.8)

This is the zero mode part of the Nahm equation that we found earlier in our construction

of selfdual strings.

To get all modes from the membrane, we drop the integration over s, and let the fields

be (non-abelian) loops themselves, XI(s) = XI
a(s)T a(s)+XI

♯ (s)1, Aµ(s) = Aµ,a(s)T
a(s)+

Aµ♯(s)1 (here we associate the index ♯ to the central element). This in turn implies a

covariant derivative Dµ(s) meaning that the fields must be functionals of loops xµ(s). We

assume a local dependence on these loops, as XI(s, [x]) = X(x(s)), Aµ(s, [x]) = Aµ(x(s)).

Then we take the supersymmetry variation as

δ(t)XI (s) = iδ(s − t)ǭΓIψ(s)

δ(t)Aµ(s) = ıǭΓµΓI [ψ(t),XI (s), •]
δ(t)ψ(s) = −ΓµΓIǫDµ(t)XI(s) − 1

6
ΓIJKǫ[X

I ,XJ (t),XK(s)]. (4.9)

The loop space supersymmetry algebra reads

[δǫ(s), δη(t)] = δ(s − t)ǭΓµη∂µ(s) (4.10)

and the supersymmetry variations close on the fermionic equation of motion

ΓµDµ(s)ψ(t) +
1

2
ΓIJ [ψ(s),XI(t),XJ ] = 0. (4.11)

4.1 Reduction to Yang-Mills

It is now straightforward to reduce the membrane theory to super Yang-Mills theory. The

first step in the reduction is to restrict to zero mode parts. Next we let just one scalar field

(let us choose it to be X(8), or in an eleven dimensional notation, the eights scalar field

would be denoted as X(10)) have a non-trivial central element R. We thus let

X(8) = R+X(8)
a T a (4.12)

and we let the other scalars be of the form

XM = XM
a T a (4.13)

with no central element, for I = M = 1, . . . , 7. Then the three-bracket reduces to a

commutator,

[XM ,XN ,X8] = R[XM ,XN ]. (4.14)

The gauge field variation reduces to

δAµ = ǭΓµΓ(10)ψ (4.15)
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Finally

δψ = ΓµΓIǫDµX
I + . . . (4.16)

reduces to

δψ =
1

2
ΓµνΓ(10)ǫFµν + ΓµΓM ǫDµX

M + . . . (4.17)

by dualizing the eight’s scalar according to

DµX
(8) =

1

2
ǫµνρF

νρ. (4.18)

We thus take eqs. (4.18) and (4.12) as a defining equation for the field X(8) that makes the

membrane theory reduce to Yang-Mills theory.

As motivation for this prescription we note that only one scalar field can be excited in

the direction (that we labeled by coordinate I = 8) of the compact M-theory circle, and

that this compact dimension corresponds to a commuting coordinate, hence to an element

in U(1).

We note that supersymmetry enforces the M2 gauge field to contain no propagating

degrees of freedom. When we reduce to D2, the gauge field somehow must acquire one

degree of freedom. If we adopt the triple product in eq. (4.5) for the M2 theory, it seems

impossible to write a supersymmetric action because with this triple product we can not

fulfil the invariance property Tr([x, y, a]b) + Tr(a[x, y, b]) = 0 of the trace form which is

needed for a supersymmetric action [4]. Still supersymmetry variations close on those

equations of motion found in [4], but it seems there is no action from which they can be

derived if we use this triple product.

5. Other options?

Given that the membrane bracket is the one we have specified in eq. (4.5), it is clear that

the fields should take values in a centrally extended Lie algebra, since otherwise we do not

get any non-vanishing traces. Could we get a non-trivial theory by taking a trivial central

extension of the type SU(N)×U(1)? If the central extension is trivial, then the U(1) fields

will obey free equations of motion (since the central element commutes with anything).

In this sense the trivially centrally extendend membrane theory is trivial, and is probably

just isomorphic to Yang-Mills theory upon a field redefinition. To obtain a non-trivial

interacting theory we must have a non-trivial central extension (given the assumed form of

the three-bracket), and this means that we must go to an infinite-dimensional gauge group

since there are no non-trivial central extensions of finitie Lie algebras. This then is another

motivation why loop space seems to arise for the M2 theories — it seems to be the only

way one can construct a non-trivial membrane theory.

It would certainly be nice if one could find a local field theory living on the membrane.

Indeed there is one such local field theory, which corresponds to SO(4) gauge group. This

theory is constructed using a different three-product, given by

[a, b, c] = G5abc± antisym. (5.1)
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and the scalar fields and fermions are then given as

XI = XI
i G

i

ψ = ψiG
i (5.2)

Here Gi are coordinates on a fuzzy three sphere, that generalizes the four-dimensional

gamma matrices γi, and G5 is then the analog of γ5.

It is not known if this theory can be reduced to Yang-Mills theory. It does not seem to

be possible to generalize this SO(4) theory to any higher (or lower) rank gauge groups. The

algebraic structure (the Fundamental Identity together with antisymmetric structure con-

stants of the three-algebra) of the membrane theory does not seem to admit any interesting

generalizations, as we show in appendix C.

At last, let us show the connection between our SU(2) × SU(2) approach and the

existing SO(4) approach taken by Basu and Harvey in [7]. Our Nahm generators should

be related to the (loop space generalization of the) Basu-Harvey generators T i as

T I(s) = λI
ij [T

i(s), T j(s)]

tI(s) = λI
ij [G

i(s), Gj(s)] (5.3)

and analogously for the tilde generators. We find that

T i(s) =
Gi(s)

√

z(s) ∓ 1
(5.4)

satisfies the loop space generalization of the Basu-Harvey’s equation

δT i(s)

δz(t)
∼ ǫijkl[T

j(s), T k(t), T l]. (5.5)

provided that Gi(s) satisfies the loop space fuzzy sphere equation

δ(s − t)Gi(s) ∼ ǫijkl[G
j(s), Gk(t), Gl]. (5.6)

Here T i :=
∫
dsT i(s). It is a quite complicated story how the proportionality constant

is determined, which depends on the choice of reducible representation of SO(4) via the

integer n. This can be found in [7](v3).

Moreover we get

T I(s) =
tI(s)

z(s) ∓ 1
(5.7)

which satisfies the loop space Nahm equation

δT I(s)

δz(t)
= ǫIJK [T I(s), T J (t)]. (5.8)

since (by a slight extension of the short computation in footnote 1 in the Introduction),

4iδ(s − t)tI(s) = ǫIJK [tJ(s), tK(t)] (5.9)
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follows as a consequence of eqs. (5.6) and (5.3).

Let us finally show the general implication of the Basu-Harvey equation (for the zero

mode part for simplicity) here. That is, we show that

dT i

dz
=

1

2(n + 2)
ǫijklG5T

jT kT l (5.10)

implies

dT I

dz
= iǫIJKT

JTK (5.11)

where T I = λI
ijT

iT j. We compute the left-hand side,

dT I

dz
= λI

ij

(
dT i

dz
T j + T idT

j

dz

)

=
1

2(n + 2)

(
λI

imǫijkl + λI
ijǫimkl

)
G5T

jT kT lTm

=
1

2(n + 2)
iǫIJKλ

J
ijλ

K
kl (P+ − P−)T iT jT kT l

= iǫIJKλ
J
ijλ

K
klT

iT jT kT l

= iǫIJKT
JTK (5.12)

In the second step we have assumed that {G5, T
i} = 0. In the third step we use eq. (A.10)

to rewrite the ’t Hooft matrices. In fourth step we used G5 = P+ − P− and P+λ
I
ijG

ij =

(n+ 3)tI , P−λ
I
ijG

ij = −(n+ 1)tI . The definition of P± is found in [2] (where it is denoted

as PR± , reflecting the fact that this is a projector on the representations R± of so(4)).

The same computation can be done for the tilde variables.

This shows that the Basu-Harvey equation implies the two Nahm equations. That

means that the Basu-Harvey equation is identical to (or possibly a stronger equation than)

two copies of the Nahm equation.

We finally note that what was given the interpretation as a mysterious coupling con-

stant λ ∼ 1
2(n+2) in the Basu-Harvey equation in Ref [7], now simply disappears when we

reformulate this equation as two Nahm equations, and hence this coupling constant need

no explanation as it is no longer there.
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A. The isomorphism su(2) ⊕ su(2) ≃ so(4)

We first embed SU(N) in SO(2N) for any N . If tI denote generators of SU(N), then the

embedding in SO(2N) is given as

tI 7→ λI := a
†
i (t

I)ijaj (A.1)
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where

ai =
1

2

(
γ2i−1 − iγ2i

)
(A.2)

are annihilation operators constructed out of SO(2N) gamma matrices, which thus satisfy

the algebra

{a†i , aj} = δij (A.3)

of N creation and N annihilation operators.

Now this gives an embedding of SU(N) into the Dirac spinor representation of SO(2N)

because

a
†
iaj =

1

2
δij −

i

2
(M2i−1,2j−1 +M2i,2j) −

1

2
(M2i−1,2j −M2i,2j−1) (A.4)

The term δij does not contribute to the embedding matrices because the SU(N) matrices

are traceless. This result was now derived in the spinor representation where

Mij =
i

2
γij . (A.5)

But we may now take the Mjk as generators of SO(2N) in any representation. In particular

we may take the defining vector representation.

Taking N = 2, we obtain the ’t Hooft matrices (I = 1, 2, 3)

λI =
1

2
ǫIJKMJK −M I4. (A.6)

Of course SO(4) ≃ SU(2) × SU(2), and we can embed another SU(2) as

λ̃I =
1

2
ǫIJKMJK +M I4 (A.7)

Conversely, the λI , λ̃I generate all of SO(4).

The ’t Hooft matrices satisfy

λIλJ = iǫIJKλK + δIJ

λ̃I λ̃J = iǫIJK λ̃K + δIJ

[λI , λ̃J ] = 0 (A.8)

and

λI
ijλ

I
kl = −2δij,kl − ǫijkl

λ̃I
ij λ̃

I
kl = −2δij,kl + ǫijkl (A.9)

From these relations we also derive the identities

ǫijkmλ
K
ml = iǫIJKλ

I
ijλ

J
kl − δikλ

K
jl + δjkλ

K
il − δlkλ

K
ij

−ǫijkmλ̃
K
ml = iǫIJK λ̃

I
ijλ̃

J
kl − δikλ̃

K
jl + δjkλ̃

K
il − δlkλ̃

K
ij (A.10)

Also, we have

Tr(λIλJ) = 4δIJ

Tr(λ̃IλJ) = 0. (A.11)

– 17 –



J
H
E
P
0
4
(
2
0
0
8
)
0
8
3

B. Verifying the ADHMN construction in loop space

Here we check the steps in the verification of the Nahm construction, following closely the

steps in [8]. We make the ansatz

AI(s) = −i
∫

[dz]v†t∂I(s)vt

φ(s) =

∫

[dz]z(s)v†t vt (B.1)

We will suppress the multiplication sign over t. Here

∆†
svs = 0∫

[dz]v†rvr = 1 (B.2)

and

∆r(z) =
δ

δz(r)
+

(
XI

r − T I(z, r)
)
σI , (B.3)

δTK(s)

δz(r)
+
i

2
ǫIJK[T I(s), T J (r)] = 0 (B.4)

which is the generalized Nahm equation.

We verify that this solves the Bogomolnyi equation by first computing

1

2
ǫIJKFIJ(s, t) = −iǫIJK







∫

[dz]∂I (s)v
†
r∂J(t)vr +

∫

[dz][dz′] v†r∂I(s)vr
︸ ︷︷ ︸

−(∂I (s)v†r)vr

v
†
r′∂J(t)vr′







= −iǫIJK

∫

[dz][dz′]∂I(s)v
†
r(z)Frr′(z, z

′)∂J(t)vr′(z
′) (B.5)

Here

Frr′(z, z
′) = δ(z − z′)δ(r − r′) − vr(z)v

†
r′(z

′) (B.6)

obeys

∫

[dz′]
∏

r′

Frr′(z, z
′)Fr′r′′(z

′, z′′) = Frr′′(z, z
′′) (B.7)

(Here δ(z) is defined as
∫

[dz]δ(z)φ(z) = φ(0), and δ(r) is defined with respect to multipli-

cation, hence it should perhaps more appropriately be written as eδ(r).) To see this, the

normalization condition (3.38) is an essential ingredient. Hence F is a projection operator

onto the space orthogonal to the kernel of ∆†, and can be written as

Frr′(z, z
′) = ∆r(z)Gr,r′(z, z

′)∆†
r′(z

′) (B.8)
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where

Grs(z, z
′) = (δ(r − s)δ(z − z′)∆†

r(z)∆s(z
′))−1 (B.9)

We can then continue on our line and get

1

2
ǫIJKFIJ (s, t) = −iǫIJK

∫

[dz][dz′] ∂I(s)v
†
r(z)∆r(z)

︸ ︷︷ ︸
“

∆†
r(z)∂I (s)vr(z)

”†

Grr′(z, z
′)∆†

r′(z
′)∂J(t)vr′(z

′)

= −iǫIJK

∫

[dz][dz′]v†r(z)σIδ(s − r)Grr′(z, z
′)σJδ(r

′ − t)vr′(z
′)

Finally we note that Grr′(z, z
′) is diagonal when the Nahm equation is obeyed, hence we

can commute σI with G and use [σI , σJ ] = 2iǫIJKσK to get

= 2

∫

[dz][dz′]v†s(z)σKGst(z, z
′)vt(z

′) (B.10)

Let us now turn to the right-hand side,

DI(s)φ(t) =

∫

[dz]z(t)DI (s)(v
†
rvr)

=

∫

[dz][dz′]∂I(s)v
†
r(z)Frr′(z, z

′)z′(t)vr′(z
′)

+

∫

[dz][dz′]z(t)v†r(z)Frr′(z, z
′)∂I(s)vr′(z

′) (B.11)

Then we again replace Frr′(z, z
′) = ∆r(z)Grs(z, z

′)∆†
r(z′) and use

∆†
r(z)vr(z) = 0

∆†
r(z)z(t) = δ(t− r)

∆†
r(z)∂I(s)vr(z) = −δ(s − r)σIvr(z) (B.12)

and get immediately that

DI(s)φ(t) = 2

∫

[dz][dz′]v†s(z)σIGst(z, z
′)vt(z

′) (B.13)

This concludes the verification that we have indeed constructed solutions to the Bogomolnyi

equation

FIJ(s, t) = ǫIJKDK(s)φ(t). (B.14)

C. No-go argument

In this appendix we make it plausible that there are no non-trivial finite-dimensional ex-

tensions of the SO(4) membrane theory within the class of semi-simple Lie algebras, like

SU(N) if we require a totally antisymmetric structure constants fabcd of the three-algebra,

as defined below.
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C.1 The associated Lie algebra

Assume the T a generate a three-algebra

[T a, T b, T c] = fabc
dT

d (C.1)

where the three-bracket is subject to the Fundamental Identity [4]

[ab[cde]] = [[abc]de] + [c[abd]e] + [cd[abe]] (C.2)

By just assuming the antisymmetry property [abc] = −[bac], we can write this in the

following equivalent form

[ab[cde]] − [cd[abe]] = [[abc]de] − [[abd]ce] (C.3)

which reflects the Lie algebra structure of the three-algebra. More clearly, if we define a

linear operator as

tab(•) = [T a, T b, •] (C.4)

then the three-algebra says that

tab(T c) = fabc
dT

d (C.5)

and then

[tab, tcd](T e) = tab(f cde
fT

f ) − tcd(fabe
fT

f )

=
(

fabf
gf

cde
f − f cdf

gf
abe

f

)

T g (C.6)

Applying the fundamental identity, we get

=
(

fabc
gf

gde
f − fabd

gf
gce

f

)

T f

= −2fab[c
gt

d]g(T e) (C.7)

The commutator is again a linear operator, and multiplication being defined by composition

of linear operators, is associative. Hence the commutator satisfies the Jacobi identity.

Not all the tab need to be linearly independent linear operators. Let us define

tA := ΓA
abt

ab (C.8)

in such a way that the tA become linearly independent and is the maximal such set. Then

the commutator must close into this set by the above result. That is,

[tA, tB ] = CAB
Ct

C (C.9)
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C.2 More structure

Let us define

tab := Γab
A t

A (C.10)

where tA is the maximal set of linearly independent such operators (the operators [T a, T b, ∗]
need not be linearly independent). That means that Γab

A viewed as a matrix with row-index

A and column index ab, need not be a square matrix. If so, then we can just find a one-sided

inverse,

Γab
A ΓB

ab = δB
A (C.11)

that is, if the index range A is less than the index range ab. Using this, we may thus invert

the above definition and get

tA = ΓA
abt

ab (C.12)

We now also define

tA,b
e := ΓA

cdf
cdb

e (C.13)

and hence

tA(T b) = tA,b
eT

e (C.14)

Contracting the Fundamental Identity

[tef (T a), T b, •] − [tef (T b), T a, •] = [tef , tab](•) (C.15)

by ΓA
ef , we get

[tA(T a), T b, •] − [tA(T b), T a, •] = [tA, tab] (C.16)

or

tAa
ct

cb − tAb
ct

ca = [tA, tab] (C.17)

or
(

tAa
cΓ

cb
C − tAb

cΓ
ca
C

)

tC = Γab
C [tA, tC ] (C.18)

Now since tA are linearly independent, and generate a semisimple Lie algebra, they must

be associated with a non-degenerated Killing form

κAB = Tr(tAtB) (C.19)

which we can use to conclude from the above that

[tA,ΓB ] = CAB
CΓC (C.20)
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Conversely one may check that

fabc
d = Γab

At
Ac

d. (C.21)

satisfies the Fundamental Identity using the two equations

[tA, tB ] = CAB
Ct

C

[tA,ΓB ] = CAB
CΓC (C.22)

This means that instead of trying to solve the Fundamental Identity, we may instead

solve the two equivalent equations above.

An obvious solution is to take

ΓAab = tAab (C.23)

In essence it is the only solution. To see this we make the ansatz

ΓA = XABt
B (C.24)

Then we find that

CAB′CXB
B′ = CAB

C′XC′

C (C.25)

Since we are interested in

fabcd = ΓAabtAcd = XABt
AabtBcd (C.26)

being completely antisymmetric, we may assume that XAB = XBA. Then the condition

we find is

[X, tA] = 0 (C.27)

in the adjoint representation. Hence, by Schur’s lemma, X = 1 for a simple Lie algebra

where the adjoint is an irrep.

The adjoint representation is not irreducible for semisimple Lie algebras though, and

in that case we can have X = λ with different constants λ in different irreps, and we now

have that

fabcd = XAB(tA)ab(tB)cd. (C.28)

This is now the most general solution of the Fundamental Identity.

We now ask if this can become totally antisymmetric in abcd. It is manifestly so in ab

and cd separately, as well as under exchange between the pairs. For complete antisymmetry

in all indices, it thus suffices to find solutions such that

fabcd + facbd = 0. (C.29)
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C.3 SU(2) ⊂ SO(4)

SU(2) can be embedded into SO(4) by taking

t1 = M23 +M14

t2 = M31 +M24

t3 = M12 +M34 (C.30)

where

(Mab)cd = δab
cd (C.31)

are the standard generators of SO(4) in an orthogonal basis, with respect to the invariant

metric δab.

We then compute

3∑

I=1

(tI)ab(tI)cd = δ23abδ
23
cd + δ23abδ

14
cd + δ14abδ

23
cd + δ14abδ

14
cd + . . . (C.32)

For this particular case of SO(4) there is room for another SU(2),

t̃1 = M23 −M14

t̃2 = M31 −M24

t̃3 = M12 −M34 (C.33)

and we get cancelation of terms like δab
12δ

cd
12 and get

(tI)ab(tI)cd − (t̃I)ab(t̃I)cd = δab
23δ

cd
14 + δab

14δ
cd
23

+δab
31δ

cd
24 + δab

24δ
cd
31

+δab
12δ

cd
34 + δab

34δ
cd
12

= ǫabcd (C.34)

that is, a completely antisymmetric tensor.

C.4 SU(N) ⊂ SO(M)

SU(N) can be embedded into the vector representation of SO(2N), but for N > 2 we can

not fit any more semi-simple group into SO(2N). This means that we can not cancel the

symmetric terms, like for instance δab
14δ

cd
14. We may embed SU(N) × SU(N ′) × . . . in some

SO(M) where M > 2N . But then there will always survive some symmetric terms that

can not canceled. The analog of the ’t Hooft matrices will sit as 2N × 2N block matrices

inside the SO(M) M ×M matrices (in the vector representation), which for N > 2 will

be strictly smaller than the M ×M matrices. Therefore there will always be uncanceled

symmetric terms that contributes to fabcd when N > 2.
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C.5 Weaker conditions

Could it be that one could relax the assumption that fabcd be totally antisymmetric and

still get a sensible membrane theory? If we just assume the symmetries

fabcd = f [ab][cd] = f [cd][ab] (C.35)

we could find many solutions to the Fundamental Identity. However if we assume a three-

bracket

[a, b, c} = −[b, a, c} (C.36)

with no other symmetries, then we must also assume that

[[a, b, c}, •, d} − [d, •, [a, b, c}} ± antisym = 0 (C.37)

in order to close SUSY up to gauge transformations (which must be defined using an

antiosymmetrized three-bracket). But this condition leads to the condition that the anti-

symmetric part of the bracket [•, •, •} satisfies the Fundamental Identity as well, and hence

we are back at where we started, which is to find non-trivial solutions of the Fundamental

Identity for the totally antisymmetric three-bracket.

We may instead relax the assumption that

(tA)ab (C.38)

be antisymmetric. That is, we relax the assumptions that fabcd is totally antisymmetric,

and instead just assume the it is antisymmetric in its three first indices, f [abc]d. This

will not affect the supersymmetry variations of the membrane since these are introduced

without any reference to the trace form Tr(T aT b). Then the Fundamental Identity becomes

equivalent with the equations

[tA, tB ] = CAB
Ct

C

2(tAΓB)[ab] = CAB
CΓC,ab (C.39)

One infinite set of solutions to these equations is provided by letting A = ef and then

tef,c
d = δ

[e
♯ F

fc]
d

Γab
ef = δab

cd (C.40)

where F ab
c are structure constants in any Lie algebra, thus satisfying the Jacobi identity.

The Lie algebra generators are ta♯ together with the U(1) generators tab.

The three-bracket now becomes

[a, b, c] = [a, b]Tr(c) + [b, c]Tr(a) + [c, a]Tr(b). (C.41)

This solution to the Fundamental Identity was found in [9].
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